
Факторы, определяющие свариваемость стали
Оценка свариваемости стали производится по значению основного показателя – углеродного эквивалента Сэкв. Это условный коэффициент, учитывающий степень влияния содержания карбона и основных легирующих элементов на характеристики шва.
На свариваемость сталей влияют следующие факторы:
- Содержание углерода.
- Наличие вредных примесей.
- Степень легирования.
- Вид микроструктуры.
- Условия внешней среды.
- Толщина металла.
Наиболее информативным параметром является химический состав.
Какое содержание углерода обеспечивает хорошую свариваемость — Справочник металлиста
Свариваемость — способность металла к образованию качественных сварных соединений, удовлетворяющих эксплуатационные требования к ним.
Возможности и условия образования качественного сварного соединения определяются многими факторами, важнейшими из которых являются:
- характеристики и свойства свариваемых металлов;
- выбор электродного и присадочного металла;
- режимы сваривания;
- температура нагревания и т. д.
На свариваемость существенно влияет химический состав стали, в частности, содержание углерода и легирующих элементов. Воздействие отдельных элементов проявляется по-разному – особенно в соединении с углеродом.
Среди главных характеристик свариваемости сталей стоит выделить склонность к образованию трещин и механические свойства сварного соединения. Их можно определить путем сваривания контрольных образцов.
Формула определения свариваемости стали
Если известен химический состав стали, можно определить ее свариваемость по эквивалентному содержанию углерода. Для этого используют формулу:
С экв. = С + Mn/20 + Ni/15 + (Cr + Mo + V)/10.
Цифры в этой формуле – это постоянные величины, а символы каждого из химических элементов обозначают максимальное включение его в сталь определенной марки, выражаемое в процентах.
Эквивалентное содержание углерода, полученное по этой формуле, является указанием на свариваемость сталей, которые можно условно разделить на четыре группы:
- хорошо свариваемые (Сэкв не превышает 0,25%);
- удовлетворительно свариваемые (Сэкв = 0,25% — 0,35%);
- ограниченно свариваемые (Сэкв = 0,35 – 0,45%);
- плохо свариваемые (Сэкв превышает 0,45%).
О хорошей свариваемости низкоуглеродистых сталей можно судить по прочному сварному соединению с основным металлом без трещин и снижения пластичности в околошовной зоне.
Свариваемость легированных сталей оценивается по возможности получения соединений, устойчивых к образованию трещин и закаленных структур, а также по снижению прочности, коррозии и так далее.
Однородные металлы свариваются гораздо легче, чем разнородные. Металл шва и металл зоны термического воздействия являются неоднородными. Признак неудовлетворительной свариваемости – склонность к образованию трещин, категорически недопустимых в сварных соединениях.
Характеристикой свариваемости термически упроченных сталей является склонность к снижению прочности в зоне термического воздействия при температуре 400-720º C, в зависимости от температуры отпуска стали при ее изготовлении на заводе. Таким образом, изготовление прочной сварной конструкции возможно только при условии детального изучения и учета свариваемости стали.
Влияние основных элементов на свариваемость сталей
Углерод, если его в стали менее 0,25%, свариваемость не ухудшает, а при большем его содержании свариваемость ухудшается, поскольку в зоне термического воздействия образуются закаленные структуры, что имеет следствием образование трещин. Если повышенное содержание углерода отмечается в присадочном материале, это приводит к пористости шва.
Марганец при его содержании не более 0,8% свариваемость не ухудшает, но при превышении этого показателя велики риски появления трещин из-за того, что этот элемент способствует закаленности стали.
Кремний в пределах 0,02–0,35% никак не воздействует на качество сваривания, а при содержании от 0,8 до 1,5% существенно затрудняет сварку по причине повышенной жидкотекучести и образования тугоплавких оксидов кремния.
Ванадий способствует закаленности стали, что усложняет процесс сварки. При сваривании ванадий, активно окисляясь, выгорает.
Вольфрам повышает прочность стали и усложняет сварку по причине сильного окисления.
Никель повышает пластичность и мощность, при этом не ухудшая свариваемость стали.
Молибден при сварке активно окисляется и выгорает, способствуя образованию трещин.
Хром, образующий тугоплавкие карбиды, значительно затрудняет сварку.
Ниобий и титан в процессе сварки соединяются с углеродом и препятствуют образованию карбида хрома, способствуя улучшению свариваемости.
Медь улучшает свариваемость, повышая прочность и пластичность стали, делая ее более устойчивой к коррозии.
Кислород работает на снижение пластичности и прочности стали, ухудшая ее свариваемость.
Азот обладает способностью создавать нитриды, то есть химические соединения с железом, которые повышают твердость и прочность, существенно снижая показатели пластичности стали.
Водород негативно сказывается на свариваемости, поскольку он накапливается в шве, вызывая образование пор и мелких трещин.
Фосфор – вредная добавка, повышающая твердость стали и делающая ее более хрупкой, что приводит к образованию холодных трещин.
Сера крайне нежелательна, поскольку она способствует быстрому образованию горячих трещин. При превышении содержания серы свариваемость резко ухудшается.
Классификация свариваемости сталей
Сталь – основной конструкционный материал, который представляет собой сплав железа с углеродом и разными примесями. Все элементы, которые входят в состав стальных изделий, оказывают влияние на ее характеристики (в частности, на свариваемость сталей).
Основные критерии, устанавливающие свариваемость
Главным показателем свариваемости является углеродный эквивалент, который обозначается, как Сэкв. Данный условный коэффициент учитывает уровень воздействия на свойства сварного шва карбона, легирующих компонентов.
Факторы, влияющие на свариваемость сталей:
- Толщина металлического образца
- Объем вредных примесей
- Условия окружающей среды
- Вместимость углерода
- Уровень легирования
- Микроструктура
Основным параметром для информации является химический состав материала.
Группы свариваемости
Учитывая все, выше перечисленные критерии, свариваемость можно подразделить на группы с различными свойствами.
Классификация металлов по свариваемости:
- Хорошая – коэффициент Сэкв составляет не менее 0,25 %– для изделий из низкоуглеродистых сталей, независимо от условий погоды, толщины изделия, предварительной подготовки.
- Удовлетворительная – коэффициент Сэкв находится в пределах 0,25-0,35 %. Ограничения: по диаметру свариваемого изделия, условиям природной среды. Толщина материала допускается не более 2 см, температура воздуха должна быть не ниже минус 5 градусов, безветренную погоду.
- Ограниченная – коэффициент Сэкв в пределах 0,350-0,45%. Для формирования высококачественного сварного соединения требуется предварительный подогрев материала. Эта процедура нужна для «плавного» аустенитного преобразования, создания устойчивых структур (бейнитные, ферритно-перлитные).
- Плохая – коэффициент Сэкв порядка 45-ти % (стали 45). В данном случае невозможно обеспечить стабильность сварочного соединения без предварительного подогрева металлических кромок, термической обработки готовой конструкции. Для создания требуемой микроструктуры нужно дополнительно осуществлять подогревы, охлаждения.
Группы свариваемости предоставляют возможность понимать технологическую специфику сваривания железоуглеродистых сплавов конкретных марок.
Зависимо от категории, технологических параметров, свойства сварных соединений могут корректироваться последовательными температурными воздействиями. Термообработка может осуществляться несколькими способами: отпуск, закаливание, нормализация, отжиг.
Наиболее востребованы закалка, отпуск. Подобные процедуры повышают твердость, соответственно прочность сварного соединения, предотвращают формирование трещин на материале, снимают напряжение.
Показатель отпуска будет зависеть от желаемых характеристик материала.
Влияние главных легирующих элементов на свариваемость стали
- Фосфор, сера – вредоносные примеси. данных химических элементов для низкоуглеродистых сталей 0,4-0,5%.
- Углерод – важный компонент в составе сплавов, который определяет такие показатели, как закаливаемость, пластичность, прочность, другие свойства материала. углерода в пределах 0,25% не воздействует на качество сварки. Наличие более 0,25% данного хим. элемента способствует формированию закалочных соединений, зоны термического влияния, образуются трещины.
- Медь. меди как примеси не более 0,3%, как добавки для низколегированных сталей – пределах 0,15-0,50%, как легирующего компонента – не более одного процента. Медь улучшает коррозионную стойкость металла, при этом не ухудшает показатели качества сваривания.
- Марганец. марганца до одного процента не затрудняет сварочный процесс. Если марганца 1,8-2,5%, то не исключается образование закалочных структур, трещин, зоны термического влияния.
- Кремний. Этот химический элемент присутствует в металле как примесь — 0,30 процентов. Такое количество кремния не влияет на показатель качества соединения металлов. При наличии кремния в пределах 0,8-1,5%, он выступает легирующим компонентом. В данном случае существует вероятность формирования тугоплавких оксидов, ухудшающих качество соединения металлов.
- Никель, как и хром, присутствует в низкоуглеродистых сталях, его содержание составляет до 0,3%. В низколегированных металлах никеля может быть около 5%, высоколегированных – порядка 35 процентов. Химический компонент повышает пластичность, прочностные характеристики металла, повышает качество сварных соединений.
- Хром. Количество данного компонента в низкоуглеродистых сталях ограничено до 0,3 процентов, его содержание в низколегированных металлах может быть в пределах 0,7-3,5%, легированных – 12-18 процентов, высоколегированных примерно 35%. В момент сваривания хром способствует формированию карбидов, значительно ухудшающих коррозионную устойчивость металла. Хром способствует формированию тугоплавких оксидов, которые негативно влияют на качество сварки.
- Молибден. Наличие этого химического элемента в металле ограничено 0,8 процентами. Такое количество молибдена позитивно сказывается на прочностных характеристиках сплава, но в процессе сварки элемент выгорает, в результате чего на наплавленном участке изделия формируются трещины.
- Ванадий. этого элемент в легированных сталях может составлять от 0,2 до 0,8 процентов. Ванадий способствует повышению пластичности, вязкости металла, улучшает его структуру, повышает показатель прокаливаемости.
- Ниобий, титан. Данные химические компоненты содержатся в жаропрочных, коррозионно-стойких металлах, их концентрация составляет не более одного процента. Ниобий и титан понижают показатель чувствительности металлического сплава к межкристаллитной коррозии.
Влияние основных элементов на свариваемость сталей
Углерод, если его в стали менее 0,25%, свариваемость не ухудшает, а при большем его содержании свариваемость ухудшается, поскольку в зоне термического воздействия образуются закаленные структуры, что имеет следствием образование трещин. Если повышенное содержание углерода отмечается в присадочном материале, это приводит к пористости шва.
Марганец при его содержании не более 0,8% свариваемость не ухудшает, но при превышении этого показателя велики риски появления трещин из-за того, что этот элемент способствует закаленности стали.
Кремний в пределах 0,02–0,35% никак не воздействует на качество сваривания, а при содержании от 0,8 до 1,5% существенно затрудняет сварку по причине повышенной жидкотекучести и образования тугоплавких оксидов кремния.
Ванадий способствует закаленности стали, что усложняет процесс сварки. При сваривании ванадий, активно окисляясь, выгорает.
Вольфрам повышает прочность стали и усложняет сварку по причине сильного окисления.
Никель повышает пластичность и мощность, при этом не ухудшая свариваемость стали.
Молибден при сварке активно окисляется и выгорает, способствуя образованию трещин.
Хром, образующий тугоплавкие карбиды, значительно затрудняет сварку.
Ниобий и титан в процессе сварки соединяются с углеродом и препятствуют образованию карбида хрома, способствуя улучшению свариваемости.
Медь улучшает свариваемость, повышая прочность и пластичность стали, делая ее более устойчивой к коррозии.
Кислород работает на снижение пластичности и прочности стали, ухудшая ее свариваемость.
Азот обладает способностью создавать нитриды, то есть химические соединения с железом, которые повышают твердость и прочность, существенно снижая показатели пластичности стали.
Водород негативно сказывается на свариваемости, поскольку он накапливается в шве, вызывая образование пор и мелких трещин.
Фосфор – вредная добавка, повышающая твердость стали и делающая ее более хрупкой, что приводит к образованию холодных трещин.
Сера крайне нежелательна, поскольку она способствует быстрому образованию горячих трещин. При превышении содержания серы свариваемость резко ухудшается.
Как влияют на свариваемость легирующие примеси
Как ранее было отмечено, включение в состав большого количества легирующих элементов приводит к изменению основных характеристик. При этом отметим следующие моменты:
- При низком показателе концентрации сталь лучше поддается сварке.
- Некоторые химические вещества могут повысить рассматриваемый показатель, другие ухудшить.
Именно поэтому при выборе легированного сплава уделяется внимание не только типу легирующих элементов, но и их концентрации. Принятые стандарты ГОСТ определяют то, что при маркировке могут указывать основные химические вещества и их количество в составе.
Распределение сталей по группам свариваемости
С учетом всех перечисленных факторов, свариваемость стали имеет различные характеристики.
Классификация сталей по свариваемости.
- Хорошая (при значении Сэкв≥0,25%): для низкоуглеродистых стальных деталей; не зависит от толщины изделия, погодных условий, наличия подготовительных работ.
- Удовлетворительная (0,25%≤Сэкв≤0,35%): присутствуют ограничения к условиям окружающей среды и диаметру свариваемой конструкции (температура воздуха до -5, в безветренную погоду, толщина до 20 мм).
- Ограниченная (0,35%≤Сэкв≤0,45%): для образования качественного шва необходим предыдущий подогрев. Он способствует «плавным» аустенитным преобразованиям, формированию устойчивых структур (ферритно-перлитные, бейнитные).
- Плохая (Сэкв≥0,45%): формирование механически стабильного сварного соединения невозможно без предыдущей температурной подготовки кромок металла, а также последующей термической обработки сваренной конструкции. Для образования нужной микроструктуры необходимы дополнительные подогревы и плавные охлаждения.
Группы свариваемости сталей позволяют легко ориентироваться в технологических особенностях сварки конкретных марок железоуглеродистых сплавов.
Разновидности нержавеющей стали
Сварка разнородных сталей нержавеющей и обычной зависит не только от свойств материала, но и от его вида. По этой причине чтобы выбрать подходящий способ сваривания стоит сначала определить видовую принадлежность стали.
По главным свойствам нержавеющая сталь классифицируется на следующие виды:
- аустенитная;
- мартенситная;
- ферритная.
В составе аустенитных имеется высокое содержание никеля и хрома. Применяются нержавеющие стали для изготовления сварных конструкций, для производства посуды, архитектурных компонентов, дымоходов, столовых принадлежностей. Сталь этого вида обладает высокой пластичностью, химической стойкостью и устойчивостью к механическим повреждениям.
В мартенситные стали входит низкий уровень углерода и хрома до 12 %. Металлы данной разновидности обладают высокой хрупкостью, но очень твердые. Из них производят режущие приспособления, бытовые изделия, турбины, крепежные элементы, которые используются в среде со слабым уровнем агрессивности.
В состав ферритных сталей входит средний уровень хрома. Они не закаляются и имеют повышенную устойчивость к агрессивным средам. Их в основном используют в машиностроительной сфере для производства втулок, валов, штуцеров.
Виды сварки нержавеющей стали
Сварка мартенситно, ферритных и аустенитных сталей выполняется практически всеми известными и распространенными способами сваривания. К наиболее популярным методам относят:
- ручная дуговая MMA;
- вольфрамовым электродом в атмосфере аргона TIG;
- при помощи полуавтоматических технологий сваривания в инертной атмосфере — MIG/MAG, лазером.
Сварка аустенитных сталей и других разновидностей нержавеющего металла обычно выполняется осторожно, во время нее следует учитывать сложный химический состав и физические свойства металла. К главным качествам, которые затрудняют процесс сварки, относятся:
- при сваривании нержавеющих сталей температура должна быть ниже, в отличие от сварки углеродистых металлов;
- сварка разнородных сталей сопровождается высоким тепловым расширением;
- низкий уровень теплопроводности.
Прямая зависимость
В процессе сварки в зоне наложения соединительного шва происходит нагрев металла выше критической температуре. В результате образуется аустенит – так называют высокотемпературную гранецентрированную модификацию железа и его сплавов. Остывая, аустенит превращается в новую структуру, параметры которой зависят от скорости охлаждения и происходящих в материале термокинетических изменений. Непосредственное влияние на эти изменения оказывает химический состав стали. Это означает, что для правильного выбора технологии и создания качественного сварного соединения необходимо заранее знать характеристики свариваемости. Ведь при использовании сталей марки 15Г или 20Н2М приходится использовать другие технологии, чем при работе со сталями марки 35 или 45.
Где применяют низколегированные стали
Применение низколегированных сталей зависит во многом от их состава.
Первыми рассмотрим магистральные газовые, нефтяные системы. Для их обустройства применяем электросварной прямошовный метод. Сырье для изготовления изделий – смеси с невысоким содержанием хрома, алюминия – предельно до 0.3 и 0.05% соответственно.
Стали 13Х используются для инструмента и спецоборудования. Прокаливание сплава не очень хорошее, термообработку больше 250 градусов не применяют.
Чтобы производить качественную арматуру для применения в строительной отрасли, применяют сплавы классов С, ГС, ХГАЮ, пр. Они подойдут для армирования ЖБ конструкций с разными несущими параметрами. Для создания надежных сварных соединений оптимально применять типы АФД, АФЮ, ГС, Сложные здания делают с применением сплавов вроде 12ХГН2МФБАЮ. Последний тип стали обязательно сначала закаливают, потом делают низкий отпуск.
В машиностроении
- Марганцевый сплав 09Г2 для создания обвязки, двутавров, балок хребтового типа. Температурные режимы эксплуатации – +450°.
- Марганцевые стали 10Г2С1 для сосудов, котлов, которые работают под давлением.
- Сплавы с медью 10ХНДП незаменимы в создании сложных машиностроительных конструкций.
- Марганцево-медные стальные низколегированные сплавы типы 12Г2СМФ выдерживают любые нагрузки, незаменимы при сооружении пролетных облегченных конструкций.
Отдельный вопрос – выбор сталей для эксплуатации в постоянно неблагоприятных условиях, то есть при осадках, низких температурах воздуха. Стойко такие воздействия выдерживают марки, произведенные согласно ГОСТ 19282. Такие стали не боятся коррозии, разрушений, не подвержены другим негативным изменениям.
Термическая обработка
В зависимости от группы свариваемости сталей и соответствующих технологических особенностей, характеристики сварного соединения можно корректировать с помощью последовательных температурных влияний. Выделяют 4 основных способа термообработки: закаливание, отпуск, отжиг и нормализация.
Наиболее распространенными являются закалка и отпуск для твердости и одновременной прочности сварного шва, снятия напряжения, предупреждения трещинообразования. Степень отпуска зависит от материала и желаемых свойств.
Термообработка металлических конструкций при проведении подготовительных работ производится:
- отжигом – для снятия напряжений внутри металла, обеспечения его мягкости и податливости;
- предыдущим подогревом с целью минимизации перепада температур.
Рациональное управление температурными влияниеми позволяет:
- подготовить деталь к работам (снять все внутренние напряжения путем измельчения зерен);
- снизить перепады температур на холодный металл;
- улучшить качество сварного объекта путем термической коррекции микроструктуры.
Корекция свойств путем перепадов температур может носить местный или общий характер. Подогрев кромок осуществляется с помощью газового или электродугового оборудования. Для нагрева всей детали и плавного охлаждения используются специальные печи.
Типы соединений
Согласно Технологическому регламенту проведения аттестации сварщиков, перечень типов соединений, которые должны быть выполнены аттестуемым сотрудником, выглядит следующим образом:
- стыковые (выполняемые без осуществления разделки кромок (СБ или BW), с односторонней разделкой кромок (CV), с двусторонней разделкой, выполняемой по кромкам (CX));
- нахлесточные (для листов – «внахлестку» (Н или LW) и «в угол» (У или FW), для труб – враструб (Р), муфтовое (М) и с отводом (О));
- тавровые (без разделки кромочных соединений (ТБ), с односторонней (TV) или двусторонней разделкой (TX)).
Типы сварных соединений
Влияние микроструктуры на свойства
Суть процессов термической обработки основывается на структурных превращениях внутри слитка и их влиянии на затвердевший металл. Так, при нагревании до температуры 727 ˚C он являет собой смешанную зернистую аустенитную структуру. Способ охлаждения определяет варианты превращения:
- Внутри печи (скорость 1˚С/мин) – образуются перлитные структуры с твердостью около 200 НВ (твердость по Бринеллю).
- На воздухе (10˚С/мин) – сорбит (феррито-перлитные зерна), твердость 300 НВ.
- Маслом (100˚С/мин) – троостит (феррито-цементитная микроструктура), 400 НВ.
- Водой (1000˚С/мин) – мартенсит: твердая (600 НВ), но хрупкая игольчатая структура.
Сварочное соединение должно обладать достаточной твердостью, прочностью, качественными показателями пластичности, поэтому мартенситные характеристики шва не приемлемы. Низкоуглеродистые сплавы обладают ферритной, феррито-перлитной, феррито-аустенитной структурой. Среднеуглеродистые и среднелегированные стали – перлитной. Высокоуглеродистые и высоколегированные – мартенситной или трооститной, которую важно привести к феррито-аустенитному виду.
Сварка низкоуглеродистых сталей
Свариваемость углеродистых сталей определяется количеством карбона и примесей. Они способны выгорать, превращаясь в газообразные формы и придавая низкокачественному шву пористости. Сера и фосфор могут концентрироваться по краям зерен, повышая хрупкость конструкции. Сварка наиболее упрощена, тем не менее, требует индивидуального подхода.
Углеродистая сталь обычного качества подразделяется на три группы: А, Б и В. Сварочные работы проводятся с металлом группы В.
Свариваемость марок стали ВСт1 — ВСт4, в соответствии с ГОСТ 380-94, характеризуется отсутствием ограничений и дополнительных требований. Сварка деталей диаметром до 40 мм происходит без подогрева. Возможные индикаторы в марках: Г – повышенное содержание марганца; кп, пс, сп – «кипящая», «полуспокойная», «спокойная» соответственно.
Низкоуглеродистая качественная сталь представлена марками с обозначением сотых долей углерода, указанием степени раскисления и содержания марганца (ГОСТ 1050-88): сталь 10 (также 10кп, 10пс, 10Г), 15 (также 15кп, 15пс, 15Г), 20 (также 20кп, 20пс, 20Г).
Для обеспечения качественного шва необходимо проводить процесс насыщения сварочной ванны углеродом C и марганцем Mn.
Способы сварочных работ:
- Ручная дуговая с использованием специальных, изначально прокаленных электродов, диаметром от 2 до 5 мм. Типы: Э38 (для средней прочности), Э42, Э46 (для хорошей прочности до 420 МПа), Э42А, Э46А (для высокой прочности сложных конструкций и их работы в особых условиях). Сваривание стержнями ОММ-5 и УОНИ 13/45 совершается под действием постоянного тока. Работы с помощью электродов ЦМ-7, ОМА-2, СМ-11 проводятся током любой характеристики.
- Газовая сварка. Чаще всего нежелательна, но возможна. Проводится с использованием присадочной проволоки Св-08, Св-08А, Св-08ГА, Св-08ГС. Тонкий низкоуглеродистый металл (d 8мм) сваривается левым способом, толстый (d 8мм) – правым. Недостатки свойств шва возможно убрать посредством нормализации или отжига.
Сварку низкоуглеродистых сталей выполняют без дополнительного подогрева. Для деталей простой формы ограничения отсутствуют. Объемные и решетчатые конструкции важно защищать от ветра. Сложные объекты желательно сваривать в условиях цеха при температуре не ниже 5˚С.
Таким образом, для марок ВСт1 — ВСт4, сталь 10 — сталь 20 – свариваемость хорошая, практически без ограничений, требующая стандартного индивидуального подбора способа сварки, типа электрода и характеристик тока.
СТАЛЬ УГЛЕРОДИСТАЯ КАЧЕСТВЕННАЯ КОНСТРУКЦИОННАЯ (ГОСТ 1050-74)
Обозначается цифрой, соответствующей % содержания углерода в сотых долях
МАРКА | % УГЛЕРОДА | Предел прочности, МПа |
05кп | Не более 0,06 | 320 |
08кп,08 | 0,05-0,12 | 330 |
10кп, 10 | 0,07-0,14 | 340 |
15кп, 15 | 0,12-0,19 | 380 |
20кп, 20 | 0,17-0,24 | 420 |
25 | 0,22 — 0,30 | 460 |
30 | 0,27-0,35 | 470 |
35 | 0,32 — 0,40 | 530 |
40 | 0,37 — 0,45 | 570 |
45 | 0,42 — 0,50 | 600 |
15Г | 0,12-0,19 | 410 |
20Г | 0,17-0,24 | 430 |
25Г | 0,22 — 0,30 | 460 |
30Г | 0,27 — 0,35 | 540 |
35Г | 0,32 — 0,40 | 600 — 720 |
40Г | 0,37 — 0,45 | 790 — 820 |
45Г | 0,42 — 0,50 | 780-1310 |
БУКВЕННЫЕ ОБОЗНАЧЕНИЯ
химических элементов, используемых как легирующие добавки
Среднеуглеродистые и высокоуглеродистые конструкционные стали
Насыщенность сплава углеродом снижает его способность к образованию хороших соединений. В процессе температурных воздействий дуги или газового пламени сера аккумулируется по краям зерен, приводя к красноломкости, фосфор – к хладноломкости. Чаще всего сваривают материалы, легированные марганцем.
Сюда относятся конструкционные стали обычного качества ВСт4, ВСт5 (ГОСТ 380-94), качественные 25, 25Г, 30, 30Г, 35, 35Г, 40, 45Г (ГОСТт 1050-88) разного металлургического производства.
Суть работы заключается в снижении количества карбона в сварочной ванне, насыщении металла в ней силицием и марганцем, обеспечении оптимальной технологии. При этом важно не допустить чрезмерных потерь углерода, что может привести к дестабилизации механических свойств.
Польза и вред
Входящие в состав стали вещества можно условно разделить на две основные группы.
- Полезные, улучшающие её конструктивные качества или усиливающие определённые свойства. На самом деле, их полезность достаточно условна, поскольку во многом зависит от процентного содержания.
- Вредные, снижающие прочностные характеристики материала и серьёзно усложняющие процесс его обработки. Их присутствие даже в незначительном количестве приводит только к ухудшению характеристик стали.
Наличие тех или иных веществ обуславливается как химическим составом, использованным в процессе плавки руды, так и применением легирующих добавок, сознательно добавляемых при изготовлении материала.
Особенности сварочных работ со сталями среднего и высокого содержания углерода:
- Изначальный подогрев кромок до 100-200˚С на ширину до 150 мм. Только марки ВСт4 и сталь 25 свариваются без дополнительного нагрева. Для среднеуглеродистых, обладающих удовлетворительной свариваемостью, перед началом выполнения работ производится полноценная нормализация. Для высокоуглеродистых необходим подготовительный отжиг.
- Дуговая сварка осуществляется покрытыми прокаленными электродами, размером от 3 до 6 мм (ОЗС-2, УОНИ-13/55, АНО-7), под постоянным током. возможна работа в среде флюса или защитных газов (СО2, аргон).
- Газовая сварка производится науглероживающим пламенем, левым способом, с предыдущим подогревом до температуры 200˚С, при равномерной низкой мощности подачи ацетилена.
- Обязательная термическая обработка деталей: закалка и отпуск либо отдельный отпуск с целью минимизации внутренних напряжений, предупреждения образования трещин, смягчения закаленных мартенситных и трооститных структур.
- Контактная точечная сварка выполняется без ограничения.
Таким образом, средне- и высокоуглеродистые конструкционные стали свариваются практически без ограничений, при внешней температуре не ниже 5˚С. При более низких температурах обязателен изначальный подогрев и высококачественная термическая обработка.
Свариваемость различных марок стали
Рассмотрим свариваемость самых распространенных марок стали.
Свариваемость стали 09г2с и Ст3
Стали Ст3 ГОСТ 380-94 и 09г2с ГОСТ 19281-89 относятся к группе 1, для их сварки не требуется нагрева. Сварной шов при соблюдении технологии не склонен к образованию трещин.
Свариваемость Сталей 10 и 20
Сталь 10 и сталь 20 ГОСТ 1050-88 относят к группе свариваемости 1. Детали, изготовленный из указанных марок стали хорошо свариваются без дополнительного подогрева.
Свариваемость Стали 45
Углеродистая сталь 45 ГОСТ 1050-88 относится к группе свариваемости 3. Для сварки эту сталь необходимо подогревать, а после сварки — подвергнуть термообработке.
Источник: www.hydro-pnevmo.ru
СТАЛИ И СПЛАВЫ ВЫСОКОЛЕГИРОВАННЫЕ (ГОСТ 5632-72)
КОРРОЗИОННОСТОЙКИЕ обладают стойкостью против различных видов коррозии | |
МАРКА | Предел прочности,МПа |
12Х18Н9 | 530 |
12X18Н9Т | 530 |
17Х18Н9 | 588 |
08X22H6T | 588 |
20X2GH14C2 | 630 |
ЖАРОСТОЙКИЕ стойкие против химического разрушения поверхности в газовых средах при t>550°С. Работают в ненагруженном или слабонагруженном состоянии | |
12МХ | 420 |
12X1M.D | 480 |
25X1МФ | 900 |
25Х2М1Ф | 800 |
25ХЗМВФ | 900 |
ЖАРОПРОЧНЫЕ работают в ненагруженном или слабонагруженном состоянии при высоких t° в течение определенного времени. Достаточно жаростойки | |
08X15М24В4ТР | 880 |
ХН70Ю | 880 |
ХН35ВТЮ | 930 |
ХН70ВМЮТ | 980 |
ХН77ТЮР | 1080 |
Сварка низколегированных сталей
Легированные стали – это стали, которые во время плавки насыщаются различными металлами с целью получения заданных свойств. Практически все из них положительно влияют на твердость и прочность. Хром и никель входят в состав жаропрочных и нержавеющих сплавов. Ванадий и кремний придают упругость, используются как материал для изготовления пружин и рессор. Молибден, марганец, титан повышают износостойкость, вольфрам – красностойкость. При этом, положительно влияя на свойства деталей, они ухудшают свариваемость стали. Кроме того, повышают степень закаливания и формирования мартенситных структур, внутренние напряжения и риски образования трещин в швах.
Свариваемость легированных сталей определяется также их химическим составом.
Низколегированные малоуглеродистые 2ГС, 14Г2, 15Г, 20Г(гост 4543-71), 15ХСНД, 16Г2АФ (ГОСТ 19281-89) относятся к хорошо свариваемым. В стандартных условиях не требуют дополнительного подогрева и термообработки по завершении процессов. При этом все же некоторые ограничения существуют:
- Узкий диапазон допустимых тепловых режимов.
- Работы проводить при температуре не ниже -10˚С (в условиях более низких атмосферных температур, но не ниже -25˚С, применять предварительный подогрев до 200˚С).
Возможные способы:
- Электродуговая сварка с силой постоянного тока 40 до 50 А, электродами Э55, Э50А, Э44А.
- Автоматическая сварка электрической дугой под флюсом с использованием присадочной проволоки Св-08ГА, Св-10ГА.
Свариваемость стали 09Г2С, 10Г2С1 также хорошая, требования и возможные способы выполнения те же, что и для сплавов 12ГС, 14Г2, 15Г, 20Г, 15ХСНД, 16Г2АФ. Важной характеристикой сплавов 09Г2С, 10Г2С1 является отсутствие необходимости подготовки кромок для деталей диаметром до 4 см.
Сварка среднелегированных сталей
Среднелегированные стали 20ХГСА, 25ХГСА, 35ХГСА (гост 4543-71) производят более значительное сопротивление формированию ненапряженных швов. Они относятся к группе с удовлетворительной свариваемостью. Требуют предварительного подогрева до температур 150-200˚С, выполнения многослойных швов, закалки и отпуска по завершении сварочных работ. Варианты выполнения:
- Сила тока и диаметр электрода при сваривании электрической дугой выбирается строго в зависимости от толщины металла, с учетом того, что более тонкие кромки сильнее подвергаются закалке во время работ. Так при диаметре изделия 2-3 мм значение тока должно быть в пределах 50-90 А. При толщине кромок 7-10 мм сила постоянного тока обратной полярности увеличивается до 200 А с использованием электродов 4-6мм. Используются стержни с целлюлозными или фтористо-кальциевыми защитными покрытиями (Св-18ХГСА, Св-18ХМА).
- При работе в среде защитного газа СО2 необходимо использовать проволоку Св-08Г2С, Св-10Г2, Св-10ГСМТ, Св-08Х3Г2СМ диаметром до 2 мм.
Часто для этих материалов применяют аргонодуговой способ или сварку под флюсом.
Теплоустойчивые и высокопрочные стали
Сварочные работы с теплоустойчивыми железоуглеродистыми сплавами 12МХ, 12Х1М1Ф, 25Х2М1Ф, 15Х5ВФ необходимо проводить с предварительным подогревом до температур 300-450˚С, с завершающей закалкой и высоким отпуском.
- Электродуговая сварка каскадным способом оформления многослойного шва, с использованием прокаленных покрытых электродов УОНИИ 13/45МХ, ТМЛ-3, ЦЛ-30-63, ЦЛ-39.
- Газовая сварка с подачей ацетилена 100 дм3/мм с использованием присадочных материалов Св-08ХМФА, Св-18ХМА. Соединение труб выполняется с предыдущим газовым подогревом всего стыка.
При сварке среднелегированных высокопрочных материалов 14Х2ГМ, 14Х2ГМРБ важно руководствоваться теми же правилами, что и для теплоустойчивых сталей, с учетом некоторых нюансов:
- Тщательная зачистка кромок и использование прихваток.
- Высокотемпературное прокаливание электрода (до 450˚С).
- Предварительный подогрев до 150˚С для деталей толщиной больше 2 см.
- Медленное охлаждение шва.
Высоколегированные стали
Применение особой технологии необходимо при сваривании высоколегированных сталей. К ним относится огромный диапазон нержавеющих, жаростойких и жаропрочных сплавов, некоторые из них: 09Х16Н4Б, 15Х12ВНМФ, 10Х13СЮ, 08Х17Н5МЗ, 08Х18Г8Н2Т, 03Х16Н15МЗБ, 15Х17Г14А9. Свариваемость сталей (ГОСТ 5632-72) относится к 4-й группе.
Характеристика свариваемости стали высокоуглеродистой высоколегированной:
- Необходимо снижение силы тока в среднем на 10-20 % в связи с их низкой теплопроводностью.
- Сварка должна проводиться с зазором, электродами размером до 2 мм.
- Снижение содержания фосфора, свинца, серы, сурьми, увеличение численного наличия молибдена, ванадия, вольфрама посредством использования специальных покрытых стержней.
- Необходимость формирования смешанной микроструктуры шва (аустенит + феррит). Это обеспечивает пластичность наплавленного металла и минимизацию внутренних напряжений.
- Обязательный подогрев кромок накануне сварочных работ. Температура выбирается в интервале от 100 до 300˚С, в зависимости от микроструктуры конструкций.
- Выбор покрытых электродов при дуговой сварке определяется типом зерен, свойствами и условиями работы деталей:для аустенитной стали 12Х18Н9: УОНИИ 13/НЖ, ОЗЛ-7, ОЗЛ-14 с покрытиями Св-06Х19Н9Т, Св-02Х19Н9; для мартенситной стали 20Х17Н2: УОНИИ 10Х17Т, АН-В-10 с покрытием Св-08Х17Т; для аустенитно-ферритной стали 12Х21Н5Т: ЦЛ-33 с покрытием Св-08Х11В2МФ.
- При газовой сварке подача ацетилена должна соответствовать значению 70-75 дм3/мм, используемая присадочная проволока – Св-02Х19Н9Т, Св-08Х19Н10Б.
- Возможны работы под флюсом с использованием НЖ-8.
Свариваемость стали – относительный параметр. Он зависит от химического состава металла, его микроструктуры и физических свойств. При этом способность образовывать качественные соединения может корректироваться с помощью продуманного технологического подхода, специального оборудования и условий выполнения работ.
- https://instanko.ru/drugoe/svarivaemost-stalej.html
- https://ometalledo.ru/kakoe-soderzhanie-ugleroda-obespechivaet-xoroshuyu-svarivaemost.html
- https://intehstroy-spb.ru/spravochnik/ponyatie-svarivaemosti-staley-gruppy-i-klassifikacii.html
- https://osvarka.com/svarka-metallov/svarka-stali
- https://math-nttt.ru/metally-i-splavy/stal-35-svarivaemost.html
- https://instrument16.ru/interesnoe/kakoe-soderzhanie-ugleroda-obespechivaet-horoshuyu-svarivaemost.html